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Symbol Usual meaning Any exception

a nozzle inner radius initial disturbance
amplitude

c speed of sound
d0 nozzle diameter
d displacement from

free surface
f dimensionless free

surface displacement
g gravitational

acceleration
h dimensionless half

sheet thickness
enthalpy

(i, j, k) unit vectors in (x, y, z)
direction

k complex wave number in
flow direction

k complex wave vector
l radius ratio, thickness

ratio
characteristic length

n wave number in
θ -direction

n unit normal vector
o magnitude as small as
p dimensionless pressure
r dimensionless position

vector
(r, θ, z) dimensionless cylindrical

coordinates
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xii Notation List

s distance along surface
t time
v = (u, v, w) dimensionless velocity

vector in (x, y, z)
direction

(x, y, z) dimensionless Cartesian
coordinates

A = Re/(WeQ)1/2 Taylor parameter
B0 Bonds number = We/Fr
Ca capillary number =

We/Re
C p constant pressure

specific heats
Cv constant volume

specific heats
D characteristic matrix
D characteristic

determinant
Fr = W 2

0 /gH0 Froude number
G inverse Fourier

transform of
disturbance

H position vector of solid
surface

amplitude vector

Hi dimensional half i th
layer thickness

H0 characteristic length
I identity matrix Fourier integral
J = [

SH0
/(

ρ1ν
2
)]1/2

Ohnesorge number
K adiabatic module of

elasticity
initial rate of axial

stretching
L characteristic length intact length
M kinematic viscosity

ratio
Mach number W1/c2

Ma = S,T T0/ρ1U 2
0 H0 Marangoni number

Mi Mach number in fluid i
N = N̄ 2 = µr dynamic viscosity ratio
N j = ν j/ν1 kinematic viscosity

ratio
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Notation List xiii

N̄α = µα/µ1 dynamic viscosity ratio
O magnitude as large as

Oh =[
SH0

/(
ρ1ν

2
1

)]1/2 = J Ohnesorge number
P pressure
Q = Q2 = ρr gas to liquid density

ratio
Q̇ volumetric flow rate
(R, θ, Z ) dimensional cylindrical

coordinate
Re = ρ1U0 H0/µ1 Reynolds number
St0 = Re/Fr Stokes number
S surface tension
T temperature period of

oscillation
U0 characteristic velocity
V = (U, V, W ) dimensional velocity

vector
We = ρ1U 2

0 H0/S Weber number
α wave number in flow

direction
β wave number in direc-

tion perpendicular to
flow

γ = C p/Cv specific heat ratio swirl number =
�

/
R0W1

δ Dirac delta function
ε small parameter
τ dimensionless time
τ deviatory stress
ς dimensionless sheet or

jet thickness
η dimensionless free

surface displacement
θ azimuthal angle phase angle,

spray angle
κ mean curvature
λ wavelength
µ dynamic viscosity
ν kinematic viscosity
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ρ density
ψ stream function
φ velocity potential amplitude of ψ

σ stress tensor
ω = ωr + iωi complex wave

frequency
dimensional

frequency
� dimensional frequency
∇ gradient operator
� circulation
Superscripts
• time rate of change
T transpose
′ perturbation differentiation
ˆ amplitude
Subscripts
adj adjoint
, partial differentiation

i inner surface i th interface
o reference quantity outer surface

A,B fluids A, B

1, 2, 3 fluids 1, 2, 3
α αth layer

l liquid

g gas
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Introduction

1.1. Overview

When a dense fluid is ejected into a less dense fluid from a narrow slit whose
thickness is much smaller than its width, a sheet of fluid can form. When the
fluid is ejected not from a slit but from a hole, a jet forms. The linear scale of a
sheet or jet can range from light years in astrophysical phenomena (Hughes,
1991) to nanometers in biological applications (Benita, 1996). The fluids
involved range from a complex charged plasma under strong electromag-
netic and gravitational forces to a small group of simple molecules moving
freely with little external force. The fluid sheet and jet are inherently unsta-
ble and breakup easily. The dynamics of liquid sheets was first investigated
systematically by Savart (1833). Platou (1873) sought the nature of surface
tension through his inquiry of jet instability. Rayleigh (1879) illuminated
his jet stability analysis results with acoustic excitation of the jet. In some
modern applications of the instability of sheets and jets, it is advantageous
to hasten the breakup, but in other applications suppression of the breakup
is essential. Hence knowledge of the physical mechanism of breakup, aside
from its intrinsic scientific value, is very useful when one needs to exploit
the phenomenon to the fullest extent. Recent applications include film coat-
ing, nuclear safety curtain formation, spray combustion, agricultural sprays,
ink jet printing, fiber and sheet drawing, powdered milk processing, powder
metallurgy, toxic material removal, and encapsulation of biomedical materi-
als. Current applications can be found in the annual or biannual conference
proceedings of several professional organizations, such as the International
Conference on Liquid Atomization and Spray Systems (ICLASS) and the
Institute for Liquid Atomization and Spray Systems (ILASS) organizations
in the Americas, Europe, and Asia, and European and American Coatings
Conferences.

Because of the diverse applications, books on the subject tend to focus
on specific applications. For example, the book by Lefebvre (1989) centers

1
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around internal combustion, and that of Masters (1985) focuses on pow-
dered milk formation. Intended for immediate practical applications, these
books rely heavily on phenomenological correlations. The book by Yarin
(1993) provides a mathematical treatment of recent applications involving
non-Newtonian fluids. In contrast, this book deals exclusively with Newtonian
fluids, which are encountered in most of the known applications. It does
not cover such topics as atomization and emulsification of liquid in liquid
(Kitamura and Takahashi, 1986; Grandzol and Tallmadge, 1973; Villermaux,
1998; Richards, Beris, and Lenhoff, 1993). Electromagnetic effects on the jet
breakups (Balachandran and Bailey, 1981), or the electromagnetic effects on
atomization and drop formation (Bailey, 1998; Fenn et al., 1989).

We address first the issue of the origin of the breakup or the physical rea-
sons for the breakup. Therefore the mathematical tool used is linear stability
analysis, which predicts the onset of jet and sheet instability. The disturbance
consisting of all Fourier components is allowed to grow both spatially and
temporally in the sheet or jet flows. If only the classical temporally growing
disturbance is considered, one arrives at a paradoxical situation as illustrated in
the first section of the next chapter. The onset of instability appears to largely
dictate the ultimate outcome of the breakup, as exemplified by Rayleigh’s
linear stability analysis of a liquid jet. However, the detailed process leading
to the eventual breakup requires nonlinear theories to describe. Nonlinear
descriptions are given in Chapter 11. The results related to the last stage of
breakup and topics that still need further development will be addressed in
the Epilogue.

1.2. Governing Equations

The governing equations and the corresponding boundary conditions listed
below will be referred to in subsequent chapters. Their derivation can be found
in standard text books, some of which are given at the end of the chapter. The
same notation will be used to denote the same physical variable throughout
the book, with few exceptions. When such exceptions on notation take place
they will be pointed out; otherwise the same symbol will not be redefined after
its first appearance. A list of notations is provided at the front of the book.

Newton’s second law of motion applied to a fluid particle gives

ρ
DV
Dt

= g + ∇ · σ, (1.1)

DV
Dt

≡ V,t + V · ∇V,
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where ρ is the fluid density, V is the velocity vector, and t is the time. The
subscript variable following a comma signifies partial differentiation with
that variable, D/Dt is the substantial derivative as defined, ∇ is the gradient
operator, g is the gravitational acceleration, and σ is the stress tensor. For an
incompressible Newtonian fluid

σ = −PI + µ
[∇V + (∇V)T ]

, (1.2)

where I is the identity matrix, µ is the dynamic viscosity, P is the pressure,
and the superscript T denotes transpose.

The conservation of mass requires

Dρ

Dt
+ ρ∇ · V = 0. (1.3)

For an incompressible fluid Dρ/Dt = 0, and (1.3) is reduced to

∇ · V = 0. (1.4)

Equations (1.1) to (1.4) are valid for each fluid involved in a flow. The i-th
interface between two adjacent fluids is infinitesimally thin and is mathe-
matically defined by a function Fi (r, t) = 0, r being the position vector. The
balance of forces exerted on a unit area of interface gives

Si∇ · n + [n · σ · n]Ai
Bi

+ ∇′′Si = 0, (1.5)

where S is the interfacial tension, n is the surface unit normal vector positive
if pointed from fluid Bi to fluid Ai on the opposite side, ∇′′ is the surface
gradient operator, and

[n · σ · n]Ai
Bi

≡ ni · σAi · ni − ni · σBi · ni ,

ni = ∇Fi/ |∇Fi | .
For viscous fluids, the kinematic condition at the interface is

[V]Ai
Bi

= 0, (1.6)

Wi = DFi

Dt
, (1.7)

where Wi is the component of the i-th interfacial velocity in the direction in
which the distance Fi from a reference position to the interface is measured.
If a fluid is inviscid, then (1.6) does not hold, and (1.7) must be applied for
each fluid separately. A viscous fluid sticks to a nonpermeable solid surface,
and thus V = 0 at the solid-viscous fluid interface. If the fluid is inviscid,
then it is allowed to slide along the solid surface, but is not allowed to pene-
trate it. Derivations of Equations (1.1) to (1.7) can be found in the books on
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fundamental fluid mechanics cited in the references section at the end of the
chapter. Note that non-Newtonian fluids as well as more general interfacial
conditions allowing phase changes to take place are not treated in this work.

1.3. Dimensionless Parameters

Even for simple Newtonian fluids, the number of dimensionless groups in-
volved in interfacial fluid dynamics is relatively large. To bring out the relevant
dimensionless parameters, we nondimensionalize the governing differential
system. Identifying the characteristic velocity and length with U0, length
with H0, time with H0/U0, and stress with ρ1U 2

0 , where ρ1 is the density
of the fluid designated by subscript 1, we have the following dimensionless
governing equations for incompressible Newtonian fluids:

Qi
Dvi

Dτ
= Qi

Fr
− ∇ pi + Ni

Re
∇2vi , (1.8)

∇ · vi = 0, (1.9)

kinematic interfacial condition,

wi = hi ,τ + vi · ∇hi , hi = Fi/H0,

dynamic interfacial condition,

We−1
i ∇ · ni = [n · τ · n]Ai

Bi
, (1.10)

and the no-slip condition at the solid wall at H/H0, where H is the position
vector defining the solid wall. The lower case letters are used to denote dimen-
sionless variables corresponding to their dimensional counterparts expressed
in capital letters, except for τ and τ , which are dimensionless time and stress
respectively. The dimensionless groups revealed in these equations are

density ratio Qi = ρi/ρ1,

viscosity ratio Ni = µi/µ1,

Reynolds number Re = ρ1U0 H0/µ1,

Froude number Fr = ρ1U 2
0 /gH0,

Weber number We = ρ1U 2
0 H0/S,

geometric parameters H/H0, Hi/H0.

(1.12)

The interface is considered to be homogeneous, otherwise Marangoni num-
bers associated with ∇′′S in (1.5) will arise. The interface is also assumed to
be isotropic. The quantitative sensitivity of the dynamics of the flow to the
variation of these dimensionless groups will be used to reveal the relative
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importance of shear, inertial, body, and surface forces in various modes of
interfacial instabilities.

Exercises

1.1. Show that if temperature varies along an interface, the surface gradi-
ent term in (1.5) leads to the temperature Marangoni number Ma =
S,T T0/ρU 2

0 H0, where S,T is the change of surface tension per unit
change of temperature, T0 is a reference temperature, and U0 is a charac-
teristic velocity. If the fluids on both sides of the interface are stationary,
what is the relevant expression for U0?

1.2. If the solute concentration varies along an interface, find the expression
of the solute Marangoni number.

1.3. Show that the Bond number B0 = We/Fr, the capillary number Ca =
We/Re, and the Stokes number St0 = Re/Fr represent respectively the
ratios of body force to surface force, viscous force to surface force, and
body force to viscous force.

1.4. Show that if U0 = 0, the Ohnesorge number ≡ [SH0/(ρν2)]1/2 is a pa-
rameter representing the ratio of the surface force to the viscous force.

1.5. Show that the mean curvature ∇ · n in (1.10) at a point on a surface
z = h(x , y, τ ) in the Cartesian coordinate (x , y, z) is given by

∇ · n = − h,xx + h,yy(
1 + h,2

x + h,2
y

)3/2 . (1.11)

1.6. Show that the mean curvature of a surface r = h(z, θ , t) is given by

∇ · n = 1

q2

(
h,z q,z + h,θ q,θ /h2)

+ 1

q

(
1

h
+ h,2

θ /h3 − h,zz − h,θθ /h2
)

, (1.12)

where q = [1 + (h,θ /h)2 + h,2
z ]1/2.
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